150/2=75
(360-150)/2=105
ответ 75,75, 105,105
(Но это не точно)
смотри файл вложен
1) угол BCA = углу CAD как накреслежащие, значит ABC - равнобедренный, AB=CD=13
2) FD=(23-13)/2=5;
3) CF=12 по теореме Пифагора
4) S=(a+b)/2*h=(23+13)/2*12= 36*6=216см²
ответ:216см²
Расскажу 3-ю. Пусть даны точки А и В и прямая m.
1) Построим точку D, в которой искомая окружность будет касаться прямой m.
a) Если AB||m, то D - пересечение серединного перпендикуляра к АВ с прямой m, и тем самым D построена.
б) Пусть прямая АВ пересекает m в точке С и пусть B лежит между А и С. Тогда по свойству касательной и секущей должно быть СD²=АС·BC.
Строим окружность с диаметром AC, а через B проводим перпендикуляр к AC до пересечения с этой окружностью в точке E. Тогда AEC - прямоугольный треугольник и поэтому EC²=АС·ВС. На m откладываем отрезок CD равный EC, так чтобы угол ACD был острый. Тем самым D найдена.
2) Строим серединные перпендикуляры к AD и к BD. Их пересечение и есть центр искомой окружности.
P.S. Если AB перпендикулярно m и A,B не лежат на m, то такую окружность, ясное дело, построить нельзя.
Вписанные углы ABD и ABC прямые, так как опираются на диаметры.
Из равенства углов следует, что BD и BC совпадают.
Из данных размеров следует, что D лежит между B и С.
Треугольники DAC и BAC имеют общую высоту (AB), их площади относятся как основания.
S(DAC)/S(BAC) =DC/BC =13/20
Центры окружностей - M и N - середины диаметров AD и AC.
MN - средняя линия в треугольнике DAC.
Средняя линия отсекает четверть площади треугольника.
(MAN~DAC, k=1/2, S(MAN)/S(DAC)=k^2=1/4)
S(DMNC)/S(DAC) =3/4
S(DMNC)/S(BAC) =3/4 *13/20 =39/80